Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Environ Interact ; 4(5): 229-257, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37822730

RESUMO

Rice is more vulnerable to drought than maize, wheat, and sorghum because its water requirements remain high throughout the rice life cycle. The effects of drought vary depending on the timing, intensity, and duration of the events, as well as on the rice genotype and developmental stage. It can affect all levels of organization, from genes to the cells, tissues, and/or organs. In this study, a moderate water deficit was applied to two contrasting rice genotypes, IAC 25 and CIRAD 409, during their reproductive stage. Multi-level transcriptomic, metabolomic, physiological, and morphological analyses were performed to investigate the complex traits involved in their response to drought. Weighted gene network correlation analysis was used to identify the specific molecular mechanisms regulated by each genotype, and the correlations between gene networks and phenotypic traits. A holistic analysis of all the data provided a deeper understanding of the specific mechanisms regulated by each genotype, and enabled the identification of gene markers. Under non-limiting water conditions, CIRAD 409 had a denser shoot, but shoot growth was slower despite better photosynthetic performance. Under water deficit, CIRAD 409 was weakly affected regardless of the plant level analyzed. In contrast, IAC 25 had reduced growth and reproductive development. It regulated transcriptomic and metabolic activities at a high level, and activated a complex gene regulatory network involved in growth-limiting processes. By comparing two contrasting genotypes, the present study identified the regulation of some fundamental processes and gene markers, that drive rice development, and influence its response to water deficit, in particular, the importance of the biosynthetic and regulatory pathways for cell wall metabolism. These key processes determine the biological and mechanical properties of the cell wall and thus influence plant development, organ expansion, and turgor maintenance under water deficit. Our results also question the genericity of the antagonism between morphogenesis and organogenesis observed in the two genotypes.

2.
J Fungi (Basel) ; 8(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422038

RESUMO

Reducing nitrogen leaching and nitrous oxide emissions with the goal of more sustainability in agriculture implies better identification and characterization of the different patterns in nitrogen use efficiency by crops. However, a change in the ability of varieties to use nitrogen resources could also change the access to nutrient resources for a foliar pathogen such as rice blast and lead to an increase in the susceptibility of these varieties. This study focuses on the pre- and post-floral biomass accumulation and nitrogen uptake and utilization of ten temperate japonica rice genotypes grown in controlled conditions, and the relationship of these traits with molecular markers and susceptibility to rice blast disease. After flowering, the ten varieties displayed diversity in nitrogen uptake and remobilization. Surprisingly, post-floral nitrogen uptake was correlated with higher susceptibility to rice blast, particularly in plants fertilized with nitrogen. This increase in susceptibility is associated with a particular metabolite profile in the upper leavers of these varieties.

3.
Funct Plant Biol ; 46(6): 507-523, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30961785

RESUMO

The advent of dwarf statured rice varieties enabled a major breakthrough in yield and production, but raising the ceiling of genetically determined yield potential even further has been the breeding priority. Grain filling is asynchronous in the rice panicle; the inferior spikelets particularly on secondary branches of the basal part do not produce grains of a quality suitable for human consumption. Of the various strategies being considered, the control of ethylene production at anthesis has been a valuable route to potentially enhance genetic yield level of rice. The physiology underlying spikelet development has revealed spikelet position-specific ethylene levels determine the extent of grain filling, with higher levels resulting in ill-developed spikelet embodying poor endosperm starch content. To break the yield barrier, breeders have increased spikelet number per panicle in new large-panicle rice plants. However, the advantage of panicles with numerous spikelets has not resulted in enhanced yield because of poor filling of inferior spikelets. High spikelet number stimulates ethylene production and downgrading of starch synthesis, suggesting a trade-off between spikelet number and grain filling. High ethylene production in inferior spikelets suppresses expression of genes encoding endosperm starch synthesising enzymes. Hence, ethylene could be a retrograde signal that dictates the transcriptome dynamics for the cross talk between spikelet number and grain filling in the rice panicle, so attenuation of its activity may provide a solution to the problem of poor grain filling in large-panicle rice. This physiological linkage that reduces starch biosynthesis of inferior kernels is not genetically constitutive and amenable for modification through chemical, biotechnological, surgical and allelic manipulations. Studies on plant genotypes with different panicle architecture have opened up possibilities of selectively improving starch biosynthesis of inferior spikelets and thereby increasing grain yield through a physiological route.


Assuntos
Oryza , Grão Comestível , Endosperma , Proteínas de Plantas , Amido
4.
Funct Plant Biol ; 46(6): 595, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-32172735

RESUMO

The advent of dwarf statured rice varieties enabled a major breakthrough in yield and production, but raising the ceiling of genetically determined yield potential even further has been the breeding priority. Grain filling is asynchronous in the rice panicle; the inferior spikelets particularly on secondary branches of the basal part do not produce grains of a quality suitable for human consumption. Of the various strategies being considered, the control of ethylene production at anthesis has been a valuable route to potentially enhance genetic yield level of rice. The physiology underlying spikelet development has revealed spikelet position-specific ethylene levels determine the extent of grain filling, with higher levels resulting in ill-developed spikelet embodying poor endosperm starch content. To break the yield barrier, breeders have increased spikelet number per panicle in new large-panicle rice plants. However, the advantage of panicles with numerous spikelets has not resulted in enhanced yield because of poor filling of inferior spikelets. High spikelet number stimulates ethylene production and downgrading of starch synthesis, suggesting a trade-off between spikelet number and grain filling. High ethylene production in inferior spikelets suppresses expression of genes encoding endosperm starch synthesising enzymes. Hence, ethylene could be a retrograde signal that dictates the transcriptome dynamics for the cross talk between spikelet number and grain filling in the rice panicle, so attenuation of its activity may provide a solution to the problem of poor grain filling in large-panicle rice. This physiological linkage that reduces starch biosynthesis of inferior kernels is not genetically constitutive and amenable for modification through chemical, biotechnological, surgical and allelic manipulations. Studies on plant genotypes with different panicle architecture have opened up possibilities of selectively improving starch biosynthesis of inferior spikelets and thereby increasing grain yield through a physiological route.

5.
Sci Rep ; 7(1): 14858, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093514

RESUMO

The CO2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO2] (E-[CO2]) by comparison to free-air CO2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO2] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO2] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO2] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO2] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO2] × N interactions is necessary to better evaluate management practices under climate change.


Assuntos
Dióxido de Carbono/farmacologia , Oryza/crescimento & desenvolvimento , Mudança Climática , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Biológicos , Nitrogênio/farmacologia , Oryza/efeitos dos fármacos , Folhas de Planta/anatomia & histologia
6.
PLoS One ; 12(2): e0171254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152098

RESUMO

Fertilization sensitivity to heat in rice is a major issue within climate change scenarios in the tropics. A panel of 167 indica landraces and improved varieties was phenotyped for spikelet sterility (SPKST) under 38°C during anthesis and for several secondary traits potentially affecting panicle micro-climate and thus the fertilization process. The panel was genotyped with an average density of one marker per 29 kb using genotyping by sequencing. Genome-wide association analyses (GWAS) were conducted using three methods based on single marker regression, haplotype regression and simultaneous fitting of all markers, respectively. Fourteen loci significantly associated with SPKST under at least two GWAS methods were detected. A large number of associations was also detected for the secondary traits. Analysis of co-localization of SPKST associated loci with QTLs detected in progenies of bi-parental crosses reported in the literature allowed to narrow -down the position of eight of those QTLs, including the most documented one, qHTSF4.1. Gene families underlying loci associated with SPKST corresponded to functions ranging from sensing abiotic stresses and regulating plant response, such as wall-associated kinases and heat shock proteins, to cell division and gametophyte development. Analysis of diversity at the vicinity of loci associated with SPKST within the rice three thousand genomes, revealed widespread distribution of the favourable alleles across O. sativa genetic groups. However, few accessions assembled the favourable alleles at all loci. Effective donors included the heat tolerant variety N22 and some Indian and Taiwanese varieties. These results provide a basis for breeding for heat tolerance during anthesis and for functional validation of major loci governing this trait.


Assuntos
Flores/genética , Genes de Plantas/fisiologia , Oryza/genética , Estresse Fisiológico/genética , Termotolerância/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Genes de Plantas/genética , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Desequilíbrio de Ligação/fisiologia , Oryza/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Estresse Fisiológico/fisiologia , Termotolerância/fisiologia
7.
Rice (N Y) ; 9(1): 28, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27255512

RESUMO

BACKGROUND: Panicle architectural traits in rice (branching, rachis length, spikelet number) are established between panicle initiation and heading stages. They vary among genotypes and are prone to Genotype x Environment interactions. Together with panicle number, panicle architecture determines sink-based yield potential. Numerous studies analyzed genetic and environmental variation of plant morphology, but the plasticity of panicle structure is less well understood. This study addressed the response of rice panicle size and structure to limited light availability at plant level for near-isogenic lines (NILs) with IR64 or IRRI146 backgrounds, carrying the QTL qTSN4 (syn. SPIKE) for large panicles. Full light and shading in the greenhouse and two population densities in the field were implemented. The image analysis tool P-TRAP was used to analyze the architecture of detached panicles. RESULTS: The qTSN4 increased total branch length, branching frequency and spikelet number per panicle in IRRI146 background in the field and greenhouse, and in IR64 background in the greenhouse, but not for IR64 in the field. In the field, however, qTSN4 reduced panicle number, neutralizing any potential yield gains from panicle size. Shading during panicle development reduced spikelet and branch number but qTSN4 mitigated partly this effect. Spikelet number over total branch length (spikelet density) was a stable allometry across genotypes and treatments with variation in spikelet number mainly due to the frequency of secondary branches. Spikelet number on the main tiller was correlated with stem growth rate during panicle development, indicating that effects on panicle size seemed related to resources available per tiller. CONCLUSIONS: The qTSN4 effects on panicle spikelet number appear as indirect and induced by upstream effects on pre-floral assimilate resources at tiller level, as they were (1) prone to G x E interactions, (2) non-specific with respect to panicle architectural traits, and (3) associated with pre-floral stem growth rate.

8.
Front Plant Sci ; 7: 623, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242827

RESUMO

Increasing rice yield potential is essential to secure world food supply. The quantitative trait locus qTSN4 was reported to achieve yield increases by enhancing both source and sink capacity. Three greenhouse experiments and one field experiment in the Philippines were conducted to study near-isogenic lines (NILs) in two genetic backgrounds, subjected to treatments with restricted light resources through shading (greenhouse) or population density (field and greenhouse). A consistent promotion of flag leaf width, leaf area and panicle size in terms of spikelet number was observed in the presence of qTSN4, regardless of environment. However, grain production per plant was enhanced only in one greenhouse experiment. An in-depth study demonstrated that increased flag leaf size in the presence of qTSN4 was associated with increased photosynthetic rates, along with lower SLA and greater N content per leaf weight and per area. This was emphasized under low light situation as the qTSN4-NILs did not express shade acclimation traits in contrast with the recipient varieties. The authors conclude that qTSN4 is a promising subject for further physiological studies, particularly under limited radiation. However, the QTL alone may not be a reliable source of increased yield potential because its effects at the plant and population scale are prone to genotype × environment interactions and the increased panicle size is compensated by the adaptive plasticity of other morphological traits.

9.
J Exp Bot ; 66(13): 3931-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25954047

RESUMO

Global warming causes night temperature (NT) to increase faster than day temperature in the tropics. According to crop growth models, respiration incurs a loss of 40-60% of photosynthate. The thermal sensitivity of night respiration (R(n)) will thus reduce biomass. Instantaneous and acclimated effects of NT on R(n) of leaves and seedlings of two rice cultivars having a variable level of carbohydrates, induced by exposure to different light intensity on the previous day, were investigated. Experiments were conducted in a greenhouse and growth chambers, with R(n) measured on the youngest fully expanded leaves or whole seedlings. Dry weight-based R(n) was 2.6-fold greater for seedlings than for leaves. Leaf R(n) was linearly related to starch (positive intercept) and soluble sugar concentration (zero intercept). Increased NT caused higher R(n) at a given carbohydrate concentration. The change of R(n) at NT increasing from 21 °C to 31 °C was 2.4-fold for the instantaneous response but 1.2- to 1.7-fold after acclimation. The maintenance component of R(n) (R(m)'), estimated by assimilate starvation, averaged 28% in seedlings and 34% in leaves, with no significant thermal effect on this ratio. The acclimated effect of increased NT on R(m)' across experiments was 1.5-fold for a 10 °C increase in NT. No cultivar differences were observed in R(n) or R(m)' responses. The results suggest that the commonly used Q10=2 rule overestimates thermal response of respiration, and R(n) largely depends on assimilate resources.


Assuntos
Carboidratos/farmacologia , Escuridão , Oryza/metabolismo , Temperatura , Respiração Celular/efeitos dos fármacos , Clima , Gases/metabolismo , Luz , Modelos Lineares , Oryza/efeitos dos fármacos , Oryza/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Solubilidade , Amido/metabolismo
10.
Front Plant Sci ; 6: 1197, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779230

RESUMO

The qTSN4 was identified as rice QTL (Quantitative Traits Locus) increasing total spikelet number per panicle and flag leaf area but potentially reducing panicle number depending on the environment. So far, this trade-off was mainly observed at grain maturity and not specifically studied in details, limiting the apprehension of the agronomic interest of qTSN4. This study aimed to understand the effect of qTSN4 and of the environment on panicle sizing, its trade-off with panicle number, and finally plant grain production. It compared two high yielding genotypes to their Near Isogenic Lines (NIL) carrying either QTL qTSN4 or qTSN12, two distinct QTLs contributing to the enlarged panicle size, thereafter designated as qTSN. Traits describing C sink (organ appearance rate, size, biomass) and source (leaf area, photosynthesis, sugar availability) were dynamically characterized along plant and/or panicle development within two trials (greenhouse, field), each comparing two treatments contrasting for plant access to light (with or without shading, high or low planting densities). The positive effect of qTSN on panicle size and flag leaf area of the main tiller was confirmed. More precisely, it could be shown that qTSN increased leaf area and internode cross-section, and in some cases of the photosynthetic rate and starch reserves, of the top 3-4 phytomers of the main tiller. This was accompanied by an earlier tillering cessation, that coincided with the initiation of these phytomers, and an enhanced panicle size on the main tiller. Plant leaf area at flowering was not affected by qTSN but fertile tiller number was reduced to an extent that depended on the environment. Accordingly, plant grain production was enhanced by qTSN only under shading in the greenhouse experiment, where panicle number was not affected and photosynthesis and starch storage in internodes was enhanced. The effect of qTSN on rice phenotype was thus expressed before panicle initiation (PI). Whether early tillering reduction or organ oversizing at meristem level is affected first cannot be entirely unraveled. Further studies are needed to better understand any signal involved in this early regulation and the qTSN × Environment interactions underlying its agronomic interest.

11.
Theor Appl Genet ; 120(6): 1233-40, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20062964

RESUMO

Tillering is one of the most important agronomic traits related to grain production in rice (Oryza sativa L.). A japonica-type variety, Aikawa 1, is known to have low-tiller number. The detailed location of a low-tillering gene, Ltn, which has been localized on chromosome 8 in Aikawa 1, was confirmed by molecular mapping. Using BC5F2 individuals derived from a cross between IR64 and Aikawa 1, the low-tillering gene was mapped to an interval defined by SSR markers ssr5816-3 and A4765. This was designated as Ltn because there was no reported gene for tillering in the region of chromosome 8. Through high-resolution linkage analysis, the candidate region of Ltn was located between DNA markers ssr6049-23 and ind6049-1 corresponding to 38.6 kbp on the Nipponbare genome sequence. These DNA markers, which were tightly linked to Ltn, are useful for marker-assisted selection in breeding studies.


Assuntos
Agricultura , Mapeamento Cromossômico/métodos , Genes de Plantas/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Característica Quantitativa Herdável , Pareamento de Bases/genética , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Genótipo , Endogamia , Fenótipo
12.
Plant Cell Environ ; 31(9): 1317-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18518914

RESUMO

A rising global population and demand for protein-rich diets are increasing pressure to maximize agricultural productivity. Rising atmospheric [CO(2)] is altering global temperature and precipitation patterns, which challenges agricultural productivity. While rising [CO(2)] provides a unique opportunity to increase the productivity of C(3) crops, average yield stimulation observed to date is well below potential gains. Thus, there is room for improving productivity. However, only a fraction of available germplasm of crops has been tested for CO(2) responsiveness. Yield is a complex phenotypic trait determined by the interactions of a genotype with the environment. Selection of promising genotypes and characterization of response mechanisms will only be effective if crop improvement and systems biology approaches are closely linked to production environments, that is, on the farm within major growing regions. Free air CO(2) enrichment (FACE) experiments can provide the platform upon which to conduct genetic screening and elucidate the inheritance and mechanisms that underlie genotypic differences in productivity under elevated [CO(2)]. We propose a new generation of large-scale, low-cost per unit area FACE experiments to identify the most CO(2)-responsive genotypes and provide starting lines for future breeding programmes. This is necessary if we are to realize the potential for yield gains in the future.


Assuntos
Dióxido de Carbono/metabolismo , Produtos Agrícolas/fisiologia , Abastecimento de Alimentos , Projetos de Pesquisa , Aclimatação , Ar , Produtos Agrícolas/genética , Genótipo , Efeito Estufa , Fenótipo , Fotossíntese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...